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DECREASE OF RESISTANCE IN A MICROPOLAR LIQUID 

M. A. Brutyan and P. L. Krapivskii UDC 532.5.032 

Modified equations of motion of a micropolar liquid are derived. It is shown 
that, in nonlinear problems, a lower resistance is possible in comparison with 
an ordinary liquid, even in the case of laminar flow. 

There are many ways to describe rheologically complex liquids, where the asymmetry of 
the stress tensor and the deformation rate tensor (viscoelastic liquids), the relaxation 
terms (Maxwellian liquid), etc. are accounted for to a greater or lesser degree. The phe- 
nomenological derivation of the equations [I] where only the asymmetry of the stress tensor 
is considered already leads to an extremely complex system of 19 partial differential equa- 
tions with 22 viscosity coefficients. Introduction of the additional assumption of isotropy 
made it possible to reduce this system to seven equations [2, 3], which are at present wide- 
ly used for describing liquids with polymer additions, liquid crystals, blood, etc. (see, 
for instance, surveys [4, 5]). 

Asymmetric hydromechanics [2, 3] is characterized by the nonsymmetric stress tensor 
oij and the additional tensor of micromoments mij: 

a~j - -- p,5~j + ~ (O y i + O jV~) + k (O y j  -- ~j,~,,~), ( i )  

mij : ~Sij div Q + [30jQ i + ?OiQj, O~ = a/Oxi. (2 )  

Thus, besides the coefficient of dynamic viscosity ~, there are in asymmetric hydro- 
dynamics three additional rotational viscosity coefficients and the coefficient k, which pro- 
vides the measure of a particle's "coupling" with its ambient. The dilatational viscosity 
coefficient does not figure in (i), since we limit our considerations here to the case of 
incompressible liquids. It is evident from (i) and (2) that, in Eulerian presentation, a 
state in asymmetric hydromechanics is determined not only be the field of velocities V, but 
also by the field of angular velocities of microrotation ~. 

The equations of motion in asymmetric hydromechanics are given by 

dV 
9-- = (~ + k)AV+ krot~.--Vp , divV = 0, (3) 

dt 

9j d, QQ = (= + ~)grad(divQ) + ~,AQ --2kf~ + krotV. (4) 
dt 

The microinertial characteristics of the medium were not taken into account in [2] [the 
left-hand side of Eq. (4) was assumed to be zero], while Eq. (4) was used in [3] and the sub- 
sequently published papers (see the literature cited in [4, 5]). 
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We shall show that Eq. (4) does not satisfy the basic requirements imposed on the evolu- 
tion of axial vector fields in three-dimensional space. For this, we shall consider the much 
more general problem concerning the evolution of the differential q-form ~ under the action 
of viscosity and the medium's motion, assigned by the vector field V. The corresponding 
equation is given by [6] 

' 0 ) 
--07- + Lv �9 = viscous terms, (5 )  

where L V is the Lie differential operator along the field V. For q = 0 (i.e., for the func- 
tions) and q = i (i.e., for the vector fields), the operator on the left-hand side of (5) 
coincides with the total derivative operator d/dt = 8/8t + (V7). For q = 2, the operator 
type depends on the dimensionality of the space; in the three-dimensional case 2 in which we 
are interested, the form ~ = PdyAdz + QdzAdx + RdxAdy can be juxtaposed with the vector field 
~, whose components are P, Q, and R (the axial vector in the physical terminology), so that 
(5) assumes the following form: 

rot[V X Q] + Vdiv~2 ~- viscous terms. (6) 
Ot 

It is clear from the above that the evolution of V is actually described by Eq. (3) 
[the viscous terms are calculated by means of (i)], while the evolution of S must be de- 
scribed by the modified equation 

j d---~ - -  (QV) V = (~ + 8) grad (div Q) + ?A~ + k (rot V - -  2~). ( 7 ) 

The l e f t - h a n d  s i d e  o f  (7 )  f o l l o w s  i m m e d i a t e l y  f rom (6)  w i t h  an a l l o w a n c e  f o r  t h e  incom- 
p r e s s i b i l i t y  o f  t h e  medium ( d i v V  = 0 ) ,  w h i l e  t h e  v i s c o u s  t e rms  in  (7 )  a r e  o b t a i n e d  d i r e c t l y  
f rom ( 2 ) .  I t  s h o u l d  be emphas i zed  t h a t ,  i n  c o n t r a s t  t o  ( 4 ) ,  e x p r e s s i o n  (7 )  c o i n c i d e s  f o r -  
m a l l y  with an accuracy to the viscous terms with Helmholtz' equation for the evolution of 
the vorticity vector m = rotV in classical hydrodynamics [7]. This is natural, since both 

and ~ are axial vectors. 

Using the terminology adopted in most papers, we shall refer to system (3)-(4) as the 
equations of a micropolar liquid (MPE); correspondingly, we shall refer to system (3), (7) 
as the modified equations of a micropolar liquid (MMPE). Let us now compare the MPE and 
MMPE characteristics by using examples of analytical solutions of these equations. The exact 
solutions of MPE are known for the two-dimensional and axisymmetric cases, and also for the 
limiting case of small Reynolds numbers [2-5]. It is readily seen that, in all these cases, 
MPE and MMPE are identically equal, and the difference between these equations manifests it- 
self only in the essentially three-dimensional problem. The analogy with the classical case 
of a viscous, incompressible liquid suggests that, essentially, the unique example of this 
type where one could hope for an exact solution is the Karman problem of rotation of an in- 
finite disk [7]. We shall use the disk plane as the z = 0 plane of the cylindrical coordin- 
ate system (r, q , z). We seek the solution of both the MPE and MMPE systems in the follow- 
ing form: 

V--[rmF(~),  r~O(~), ~L-1H(~)], 

= [r(0X/(~), r ~ g ( ~ ) ,  ~h(~)l. 

H e re ,  m i s  t h e  a n g u l a r  v e l o c i t y  o f  t h e  d i s k ,  t = / m p / ( p  + k ) ,  and ~ = t z .  
(8 )  and (9)  in  MPE and NNPE y i e l d s  t h r e e  c o i n c i d e n t  e q u a t i o n s :  

(8) 
(9) 

Substitution of 

dF H d~F C1 dg , 2FG a r- H dG d~G __ C1 d[ 
F 2 - -  G 2 -t- d~ d$ 2 d~ d~ dr '~ " d--U' 

r d H  
2F 3-  - O, C~ .= k/(H -I- k) 

and three additional equations for MPE, 

. - d~ ~ /  

(lO) 
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O / 2 3 + z 

F ig .  1. Flow v e l o c i t y  components. 

0 ,' ~ 2-- --=--~3 .... 4' Z 

Fig. 2. Components of the angular velocity of microro- 
tation. The solid curves represent calculations based 
on MPE, while the dashed curves pertain to calculations 
based on MMPE. 

dg d2----~g - -  C~ 2g - -  - - 7 -  l '  
C~ F d + G f + H  (i~ ....... C~ d~ 2 ds 

, / 

/ H dh ~, ," dZh d f  d f  (Ii) 

and MMPE, respectively, 

c~ -j{d (ffl--f~F)=co d~f - - q  ( 2f --d{ ~ , d-de-- 0, 

r d v _  - -gF) ]  - -  - -C,  - - - - ] ,  C~ ~ , ,  (gk~- hG) .... 2 (fO .... C~ d2g (28 . dF ',, (12) 

(" d~h df '~ df 
C~[2(hF--fH) i  = C3 t - ~ - -  + 2 d~ ) --2C,2 d--~- - -  2C~ (h - -  O) 

Here,  C 2 = ~ p ( ~  + k) -2 ,  C 3 = (~ + ~ + ~)~p(~  + k) -2 ,  C4 = J~p(~ + k)  -1 are d imens ion less  
constants. 

The usual adhesion condition is used as the boundary condition for V. The problem of 
the boundary condition for 9 is less clear [8]. As an alternative to the adhesion condition 

= 0 [3], other possibilities have been discussed in the literature since the publication 
of [2], for instance, the condition 9 = 1/2 rotV. For the sake of determinacy, we shall sub- 
sequently use the adhesion condition, although a solution can readily be obtained for other 
boundary conditions as well. By imposing also the usual damping conditions at infinity, 
we obtain the boundary conditions 

F=H:O, G=-. i, f=g=h Ofor $ O, 

F---G:O, f==d--h==O for {:oo. 

(13) 

(14) 
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Fig. 3. Torque and axial velocity at infinity as func- 
tions of the coupling coefficient. The solid curves 
represent calculations based on MPE, while the dashed 
curves pertain to calculations based on MMPE. 

Boundary-value problems for MPE (i0), (ii), (13), and (14) and MMPE (i0) and (12)-(14) 
have been solved numerically by using the method of matrix trial runs. The calculation ac- 
curacy was checked by comparison with the classical Karman solution [7], which corresponded 
to Cx = 0. Figures i and 2 show the diagrams of the functions F, G, H, f, g, and h for CI = 
0.5, C= = C 3 = 0.25, and C~ = 5.10 -3. The results of calculations based on MPE are indi- 
cated by solid curves, while the results obtained by means of MMPE are shown by dashed 
curves. In this case, the velocity is not greatly affected by changes in the equations 
(Figs. i and 3); the angular velocity of microrotation is affected more substantially (Fig. 
2). 

The resistance moment acting on the disk is determined by the means of the expression 

o 

Using the expressions for the stress tensor (i), the micromoment tensor (2) and the ad- 
hesion boundary conditions, we find 

r %~ : F 8z I~=o F + k r --~-- (0), (16)  

ae~ I ~ r - /< -  
m~: =: ~ ~ t z = o  = pe - - -  (0). (17 )  ~ +  k d~ 

The total moment acting on an infinite disk is infinite. Therefore, we find the moment 
acting on the finite part of a disk whose radius is R; if we neglect the edge effects, we 
find that the same moment also acts on a finite disk with the radius R. Substituting (16) 
and (17) in (15), we obtain 

M = 4 n  F ~ + k  dE ( 0 ) - - ~ - - + ~  F ~  k dE (0) . (18)  

For large values of R, the basic contribution is provided by the first term in (18), 

M ~ ~R ~ V ~ - i - J ~ V ~ ~  (o) 

F i g u r e  3 shows t h e  c a l c u l a t i o n  r e s u l t s  f o r  t h e  t o r q u e  and t h e  a x i a l  v e l o c i t y  a t  i n f i n i t y  
in  r e l a t i o n  t o  t h e  d e g r e e  o f  " c o u p l i n g "  between p a r t i c l e s  and t h e  a m b i e n t .  In  t h i s ,  t h e  de-  
pendences  o f  t h e  p a r a m e t e r s  C2, C3, and C 4 on C1 s t o o d  ou t  c l e a r l y :  C 2 = A(1 - Cz) 2, C 3 = 
B(1 - C1) 2, and C~ = fi(1 - C z ) .  I t  was assumed t h a t  A = B = 1 and C = 10 -2 in  t h e s e  c a l c u -  
l a t i o n s .  I t  i s  e v i d e n t  from F i g .  3 t h a t  t h e  t o r q u e  d i m i n i s h e s  w i t h  an i n c r e a s e  in  Cz. Qua l -  
i t a t i v e l y ,  t h i s  r e s u l t  d id  n o t  change  w i t h  v a r i a t i o n s  in  A, B, and C in  t h e  r a n g e s  A, B e 
[1,  10] and C �9 [10 -2 , 10 -1 ] in  ou r  c a l c u l a t i o n s .  At f i r s t  g l a n c e ,  such  t o r q u e  b e h a v i o r  
seems u n e x p e c t e d ,  s i n c e  t h e  p r e s e n c e  o f  a d d i t i o n a l  v i s c o u s  d i s s i p a t i o n  mechanisms in  a m i c r o -  
p o l a r  l i q u i d  s h o u l d  augment t h e  f r i c t i o n  f o r c e s ,  t h e  r e s i s t a n c e  moments,  e t c .  However,  such  
"additive" considerations are valid only in situations where MPE or MMPE become linear. Ac- 
tually, in the case of Foiseuille or Couette flow and other linear problems, the forces and 
the moments increase [2, 3]. The Karman problem remains nonlinear for any, even very small, 
values of the angular velocity ~. This is due to the absence of a characteristic dimension 
and, consequently, the impossibility of introducing the Reynolds number. On the whole, the 
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above results indicate that, even in the case of laminar flow of a micropolar liquid, in 
essentially nonlinear problems, diminution of forces and moments in comparison with the case 
of an ordinary viscous liquid is possible. 

We have not come across a solution of the Karman problem for a micropolar liquid in 
publications. We shall attempt to find the solutions of the other nonlinear problems in 
classical hydromechanics that would admit of self-similar solutions in an ordinary viscous 
liquid. In the two-dimensional case, MPE and MMPE coincide and are given by 

o (~, A~) k) p - § 2 4 7  Ai~+kA~=0 ,  
a(x, y) (19) 

a(x, 
Here ,  V = ( 3 r  - 3 ~ / 8 x ,  0) and a = (0 ,  0, o ) .  I n  t h e  p rob lem o f  f l ow in  t h e  v i c i n i t y  o f  
a planar critical point, we naturally seek the solution in the following form: 

ax r  ap 
r = ~ f (Xg), ~ = a~xG (~g), ~ = ( 2 0 ) 

The constant a determines the behavior of the solution at a location remote from the 
solid surface ~ + a xy. In this, (19) is reduced to a system of two ordinary differential 
equations, since the analog of the Hiemenz solution also exists for a micropolar liquid. In 
the problem of a wedge source, the first of Eqs. (19), written in terms of polar coordinates 
(r, 8), suggests that the solution be sought in the following form: 

= 1~(e), ~ = ~(O) / r<  ( 2 1 )  

Substitution of (21) in (19) results in an overdetermined system of three ordinary dif- 
ferential equations, since the second of Eqs. (19) yields two equations, as it contains terms 
of the type r-if1(e) and r-4fa(8). One of these equations can be conveniently rewritten by 
using the old notation, 

1 
=- , rotV, (22)  

2 

w h i l e  t h e  o t h e r  two can be r e d u c e d  to  an o v e r d e t e r m i n e d  sys t em of  e q u a t i o n s  w i t h  r e s p e c t  t o  
u = a~/ae: 

dO~ § 4U § ,u -b- = const, 
(23) 

dW 
-- § 4U § 7 7 - 1 U  z = COIISt. 

d0Z 

I t  i s  e v i d e n t  f rom (22)  and (23)  t h a t  t h e  a n a l o g  o f  t h e  G e o f f r e y - H a m e l  s o h t i o n  f o r  a 
m i c r o p o l a r  l i q u i d  has a s e l f - s i m i l a r  c h a r a c t e r  o n l y  i f  c o n d i t i o n  (22)  a t  s o l i d  b o u n d a r i e s  
i s  s a t i s f i e d  i n s t e a d  o f  t h e  a d h e s i o n  c o n d i t i o n  a = 0 and i f  t h e r e  i s  a r e l a t i o n s h i p  between 
t h e  d e n s i t y  o f  t h e  micromoment o f  i n e r t i a  and t h e  d i s s i p a t i v e  c o e f f i c i e n t s ,  

. ( 2 4 )  

A similar investigation of exact axisymmetric solutions for a micropolar liquid yielded 
the following results: There exists an exact solution in the problem of the spatial criti- 
cal point for any boundary conditions; in the problem of jet outflow in a submerged space, 
a solution is possible only under condition (24). It should be noted that the solutions 
of analogs of the Geoffrey-Hamel and Landau-Squire problems, if they exist, are obtained 
directly from the classical ones by substitution of ~ + k/2 for D. Generally, nonexistence 
of a self-similar solution of these problems is connected with the fact that an "internal" 
dimensional length ~r exists in a micropolar liquid, in contrast to a classical one, so 
that considerations of dimensionality do not imply that the solution must have a self-similar 
form of the type (21). In the Karman and Hiemenz problems, there is originally a dimensional 
length (J~/p~ and s respectively), and the appearance of an additional "internal" length 
does not alter the form of solutions (8), (9), and (20). In conclusion, it should be noted 
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that, in the general three-dimensional case, if there is relationship (24) and condition 
(22) is satisfied at solid boundaries, we naturally assume, by analogy with exact solutions, 
that (22) holds throughout the flow field. In this case, MMPE are self-consistent, in con- 
trast to MPE. Actually, (3) is then transformed into an ordinary Navier-Stokes equation 
with the viscosity coefficient D + k/2, while (7) is transformed into the Helmholtz equation 
for vorticity [in contrast to (7), expression (4) does not convert to the Helmholtz equa- 
tion]. This indicates once again that the correct approach in describing the flow of a 
micropolar liquid must be based on MMPE. 

NOTATION 

oij, stress tensor; mij, micromoment tensor; 6ij , Kronecker tensor; Eij k Levi-Civita 
tensor; ~, 6, and 7, rotational viscosity coefficients; B and k, viscosity coefficients; p, 
pressure, p, density; j, micromoment of inertia; V, velocity, ~, angular velocity of micro- 
rotation; ~, differential form; LV, Lie operator; r, ~ , z, cylindrical coordinates; ~, angu- 
lar velocity of the disk; F, G, H, f, g, and h, dimensionless functions; CI, C2, C3, and C~, 
dimensionless constants; M, moment; ~, stream function; a and ~, constants. 
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CHARACTERISTICS OF THE RHEOLOGICAL BEHAVIOR OF ELECTROSENSITIVE 

DISPERSIONS OF DIFFERENT STRUCTURAL-RHEOLOGICAL TYPES 

Yu. G. Yanovskii, E. V. Korobko, and V. V. Barancheeva UDC 532.135:537.212 

A classification of electrosensitive dispersions of different structural- 
rheological types is made. 

According to existing ideas electrorheological fluid systems (ERS), which are sensitive 
to the action of an electric potential, consist of dispersed compositions with a complicated 
formula, in which the solid phase (most often silicon dioxide) is insoluble in the disper- 
sion medium - nonpolar organic substances, for example, oils. Such compositions also con- 
tain a number of other necessary components, in particular, stabilizers and activators. The 
stabilizers become adsorbed on the developed surface of the particles of the solid phase and 
encapsulate them, thereby preventing conglomeration and precipitation. The activators, by 
polarizing the particles, make ERS electrically active. Under the action of an external 
potential the particles of the solid phase, becoming dipoles, interact actively with one 
another. In the process they rotate, which rotation is recorded on speckle pictures, and 
move into the volume of the dispersion medium, and this motion is accompanied by entrainment 
of the medium and local turbulence. As the intensity of the electric action becomes strong- 
er the particles of the solid phase are combined into separate associates and continuous fi- 
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